Nonparametric choice modeling: applications to operations management
نویسنده
چکیده
With the recent explosion of choices available to us in every walk of our life, capturing the choice behavior exhibited by individuals has become increasingly important to many businesses. At the core, capturing choice behavior boils down to being able to predict the probability of choosing a particular alternative from an offer set, given historical choice data about an individual or a group of “similar” individuals. For such predictions, one uses what is called a choice model, which models each choice occasion as follows: given an offer set, a preference list over alternatives is sampled according to a certain distribution, and the individual chooses the most preferred alternative according to the sampled preference list. Most existing literature, which dates back to at least the 1920s, considers parametric approaches to choice modeling. The goal of this thesis is to deviate from the existing approaches to propose a nonparametric approach to modeling choice. Apart from the usual advantages, the primary strength of a nonparametric model is its ability to scale with the data – certainly crucial to applications of our interest where choice behavior is highly dynamic. Given this, the main contribution of the thesis is to operationalize the nonparametric approach and demonstrate its success in several important applications. Specifically, we consider two broad setups: (1) solving decision problems using choice models, and (2) learning the choice models. In both setups, data available corresponds to marginal information about the underlying distribution over rankings. So the problems essentially boil down to designing the ‘right’ criterion to pick a model from one of the (several) distributions that are consistent with the available marginal information. First, we consider a central decision problem in operations management (OM): find an assortment of products that maximizes the revenues subject to a capacity constraint on the size of the assortment. Solving this problem requires two components: (a) predicting revenues for assortments and (b) searching over all subsets of a certain size for the optimal assortment. In order to predict revenues for an assortment, of all models consistent with the data, we use the choice model that results in the ‘worst-case’ revenue. We derive theoretical guarantees for the predictions, and
منابع مشابه
Building Optimized and Hyperlocal Product Assortments: A Nonparametric Choice Approach∗
We consider the problem of “hyper-localizing” product assortments at a fashion retailer—that is, customizing the offerings to the particular preferences of customers visiting the store, so that customers can easily find the products that fit their tastes and purchase more. To make this decision, the firm must accurately predict the demand for each style at each store—a challenging task because ...
متن کاملThe Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features
Nonparametric Bayesian models are often based on the assumption that the objects being modeled are exchangeable. While appropriate in some applications (e.g., bag-ofwords models for documents), exchangeability is sometimes assumed simply for computational reasons; non-exchangeable models might be a better choice for applications based on subject matter. Drawing on ideas from graphical models an...
متن کاملA Nonparametric Approach to Modeling Choice with Limited Data
A central push in operations models over the last decade has been the incorporation of models of customer choice. Real world implementations of many of these models face the formidable stumbling block of simply identifying the ‘right’ model of choice to use. Thus motivated, we visit the following problem: For a ‘generic’ model of consumer choice (namely, distributions over preference lists) and...
متن کاملVariable Selection and Model Choice in Structured Survival Models
In many situations, medical applications ask for flexible survival models that allow to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection is desired. In particular, it has to be decided which covariates should be assigned timevar...
متن کاملReview: Handbook of Real-World Applications in Modeling and Simulation (Wiley Handbooks in Operations Research and Management Science)
Handbook of Real-World Applications in Modeling and Simulation provides a thorough explanation of modeling and simulation in the most useful, current, and predominant applied areas of transportation, homeland security, medicine, operational research, military science, and business modeling. Offering a cutting-edge and accessible presentation, this book discusses how and why the presented domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011